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Abstract
Unburnt hydrocarbon flames produce soot, which is the second biggest contributor to global warming and harmful to
human health. The state-of-the-art high-speed imaging techniques, developed to study non-repeatable turbulent
flames, are limited to million-frames-per-second imaging rates, falling short in capturing the dynamics of critical
species. Unfortunately, these techniques do not provide a complete picture of flame-laser interactions, important for
understanding soot formation. Furthermore, thermal effects induced by multiple consecutive pulses modify the
optical properties of soot nanoparticles, thus making single-pulse imaging essential. Here, we report single-shot laser-
sheet compressed ultrafast photography (LS-CUP) for billion-frames-per-second planar imaging of flame-laser
dynamics. We observed laser-induced incandescence, elastic light scattering, and fluorescence of soot precursors -
polycyclic aromatic hydrocarbons (PAHs) in real-time using a single nanosecond laser pulse. The spatiotemporal maps
of the PAHs emission, soot temperature, primary nanoparticle size, soot aggregate size, and the number of monomers,
present strong experimental evidence in support of the theory and modeling of soot inception and growth
mechanism in flames. LS-CUP represents a generic and indispensable tool that combines a portfolio of ultrafast
combustion diagnostic techniques, covering the entire lifecycle of soot nanoparticles, for probing extremely short-
lived (picoseconds to nanoseconds) species in the spatiotemporal domain in non-repeatable turbulent environments.
Finally, LS-CUP’s unparalleled capability of ultrafast wide-field temperature imaging in real-time is envisioned to
unravel mysteries in modern physics such as hot plasma, sonoluminescence, and nuclear fusion.

Introduction
Hydrocarbons such as kerosene, gasoline, and diesel,

used in applications ranging from household for lighting-
cooking to fuels in jet engines, produce harmful emissions
such as polycyclic aromatic hydrocarbons (PAHs), soot,
CO, and NOx1–5. In an epidemiological study in Nepal,

women who used kerosene lamps had almost 10 times
larger rates of tuberculosis than those who did not use
them6. Climate studies have shown that one kilogram of
soot or black carbon in the atmosphere produces as
much warming in a few months via light absorption as
700 kilograms of carbon dioxide do in a century7. The
emitted soot particles have enormous impacts on human
health depending on their size and maturity. A majority of
soot particles are produced in the nanometers size range
(e.g. PM2.5), therefore, they can easily penetrate our lungs
and even get into our bloodstream8, causing health pro-
blems such as lung cancer and heart-related diseases9.
The increased maturity level of soot particles is associated
with varied fine structures, which can be carried by the
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wind over long distances and pollute the air, water, and
soil10. PAHs are the precursors of the soot particles; and
they are toxic, carcinogenic compounds, cause damage to
humans by forming free radicals and reactive oxygen
species in the body11. In contrast to their harmful impacts,
investigations on carbonaceous nanoparticles are essential
in materials science, thanks to their usefulness as carbon
nanomaterials in various applications12. For example,
carbon nanomaterials synthesized from flames have been
widely used for hydrogen and natural gas storage, fuel cell
devices, water purification, solar cell materials, and
quantum dots13. They have advantages in terms of high
energy efficiency, low-cost, and rapid production in large
quantities14. Recently, metal combustion has received
renewed interest largely because of their ability to pro-
duce and characterize metallic nanoparticles in bulk from
flame synthesis15. These plasmonic nanoparticles exhibit
excellent optical properties of light trapping in energy-
harvesting devices16.
The formation of soot particles from gaseous PAHs has

remained a mystery in combustion science as well as in
astronomy as 70% of interstellar space is made of carbo-
naceous particles17. Recent works18,19 have made sig-
nificant progress in understanding the formation of soot
particles in hydrocarbon flames, which is initiated by the
growth and clustering of soot precursors20,21 such as
PAHs, where extremely fast radical-chain reactions take
place18,22. Nevertheless, these studies are limited to only
point-measurements or microscopic regions in the flames,
and a real-time, detailed two-dimensional (2D) view of
soot formation at this time scale is still not available. In
particular, there is a need for simultaneous measurement
of key parameters such as primary soot particle size, soot
aggregate size, and temperature to validate the soot for-
mation theory and models.
Most technical combustion applications are governed by

turbulence; thus, they are often non-repeatable and phy-
sically vary in the millisecond to microsecond time
range23,24. The chemical species in combustion have life-
times in the picosecond to microsecond time range25–27.
Therefore, ultrafast imaging of combustion has mainly
focused on either resolving the turbulence or measuring
the optical signals in the time domain, resulting from the
flame-laser interactions. However, none of the state-of-
the-art techniques for single-shot 2D imaging of com-
bustion can achieve beyond a few million frames
per second (Mfps). For resolving turbulent fields at Mfps,
2D-3D high-repetition-rate soot imaging methods were
reported, which used burst-mode lasers and several cam-
eras equipped with dual-stage intensifiers23,28. However,
these methods were limited to low laser fluences since
multiple laser pulses at high fluences could induce thermal
effects and modify the physical properties of the soot
particles. Using a single pulse, a single-camera-based

2D imaging system captured laser-induced incandescence
(LII) at merely 10 Mfps for primary soot size determina-
tion with a limited number of pixels and a poor SNR24. In
addition, accurate primary particle size determination
becomes unreachable in high-pressure practical combus-
tion systems where incandescence decay times are sig-
nificantly shorter (a few nanoseconds), which requires a
much higher imaging speed. Other methods for the faster
lifetime measurements in combustion are typically point
measurements that are realized using fast photodiodes or
photomultiplier tubes coupled to oscilloscopes29,30.
Extremely short lifetimes of species have also been mea-
sured by a streak camera as a single-shot line measure-
ment31,32. Therefore, it is imperative and remains a
challenge to develop a single-pulse real-time 2D imaging
system at billion-frames-per-second (Gfps) to gain a
better understanding of ultrafast physical and chemical
processes that control the PAHs growth, soot inception,
and soot formation.
Since 2014, compressed ultrafast photography (CUP)

has been reported for single-shot 2D imaging with an
imaging speed of up to 70 trillion frames-per-second33,34.
CUP surpasses other ultrafast imaging modalities in terms
of both imaging speed and sequence depth (i.e., the
number of frames in a single acquisition), and it can work
either with or without active illumination. Furthermore,
CUP has captured real-time light propagation in scatter-
ing media35 and chaotic systems36, nonlinear light-matter
interactions34,35,37, passive current flows through myeli-
nated axons38, and spectral fluorescence lifetimes34 exci-
ted by a single laser pulse.
Planar imaging techniques based on laser sheets have

been reported for time-resolved 2D mapping of flame
fronts and structures39. Line-of-sight ultrafast ballistic
imaging techniques based on the Kerr cell have been
reported for imaging droplets in highly scattering turbid
media i.e., atomizing sprays in combustion devices40–42. In
this work, we synergize planar imaging and CUP to
visualize flame-laser interactions in real-time for the fun-
damental understanding of soot inception and soot
properties and propose it to visualize extremely short-lived
multi-species (picoseconds to nanoseconds) in combus-
tion. Here, using laser-sheet CUP (LS-CUP), we demon-
strate a comprehensive experimental study of single-pulse
Gfps real-time planar imaging of (i) laser-induced fluor-
escence (LIF) of PAHs, (ii) one-color LII for primary
particle size determination, (iii) two-color LII for soot
temperature mapping and particle sizing, and (iv) elastic
light scattering (ELS) for soot aggregate sizing and the
estimation of the number of monomers. We further
exploited the multi-channel capabilities of LS-CUP for
simultaneously probing two quantities in flame in real-
time, which can offer a significant advantage in the spa-
tiotemporal correlation of two flame species. Compared to
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the state-of-the-art single-shot ultrafast imaging techni-
ques in combustion diagnostics, LS-CUP has prominent
advantages in imaging speed, light throughput, sequence
depth, as well as temporal resolution and scalability in
multi-species and high-dimensional imaging.

Results
System and principle of LS-CUP for flame
A photograph of a laminar, symmetric, and relatively

stable kerosene flame studied in this work is given in
Fig. 1a. Kerosene was chosen as a fuel in this investigation
due to its broad uses from household to combustion
engines. The flame can be characterized using four dif-
ferent optical signals (see Fig. 1b). First, flame luminosity
is essentially a combination of blackbody radiation of hot
soot particles and chemiluminescence signals from che-
mical reactions of combustion intermediates such as OH,
CH, or C2

43. The other three signals are induced by
excitation by a nanosecond laser pulse25,44,45. The first
laser-induced signal is ELS, which in a first approximation
may be treated as Rayleigh scattering of the soot particles
with sizes <1/10 of the laser excitation wavelength46,47.
The ELS signal has a time span close to that of the

excitation laser pulse (see Fig. 1b). Second, LII is the
blackbody radiation from the soot particles when these
nano-sized particles are heated up to their sublimation
temperature of ~4000 K, i.e. about twice the flame’s nat-
ural temperature of ~2000 K48. The size of the particles
can be determined using time-resolved (TiRe) LII since
larger soot particles cool slower than the smaller ones, in
the range of several hundreds of nanoseconds (see
Fig. 1b)49–51. Finally, LIF is the spontaneous emission of
photons when the valence electrons in PAH molecules are
excited to the conduction band by laser light absorption.
PAH molecules usually produce LIF signals with lifetimes
shorter than 100 ns44. Therefore, traditionally, for col-
lecting a specific signal of interest, time-gated cameras are
used. For example, a short and sufficiently delayed time
gate allows the detection of LII while rejecting flame
luminosity and most of the LIF.
Laser-sheet imaging is one of the most popular diag-

nostics to “optically section” a 2D plane of a volumetric
flame39. It extracts a 2D map of the species of interest,
collected on a camera kept at 90° relative to the plane.
Figure 1c, d shows the side-view and the top-view of our
laser sheet probing the central section of the flame with a
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pulsed laser of dual-wavelength outputs (532 nm and
1064 nm), fluence up to 0.25 J cm−2, repetition rate of
4 Hz, and pulse duration of 15 ns. Previous experiments
have shown that LII excitation using both wavelengths
gave no difference on LII signal profiles in laminar sooty
flames48. Here, for soot, 1064 nm is used to avoid LIF
since PAHs have negligible absorption cross-section at
this wavelength. A laser wavelength of 532 nm is used for
exciting PAH molecules at a much lower pulse energy
(below the LII threshold) to avoid LII excitation. The laser
beam is expanded to 20 mm and the periphery of the
collimated beam is blocked using an aperture to generate
an approximately homogeneous intensity profile. A con-
vex cylindrical lens with a 500mm focal length (is used to
generate a laser sheet with a thickness of ∼0.4 mm and
height of ∼10mm. A half-wave plate and a polarizer are
used to tune the laser fluence (see Supplementary Fig. S2
for fluence calibration). The burner is mounted on a
manual translation stage so that two different height
positions of the flame can be imaged (h1 and h2 in Fig. 1a).
h1 is referred to as the soot-inception region where both
PAHs and soot exist, while h2 mainly contains soot. The
flame setup is covered by screens to reduce turbulence.
An imaging lens assembly projects flame dynamics to

two intermediate image planes (IIPs), separated by a non-
polarizing beam splitter. A conventional CCD camera is
placed at one IIP to record a time-unsheared view of the
flame signals. The other intermediate dynamic scene is
relayed to a digital micro-mirror device (DMD) which
displays a static pseudo-random binary pattern. By turn-
ing each individual pixel of the DMD to either +12°
(“ON”) or –12° (“OFF”), two beam paths masked by
complementary patterns are formed. These two spatially
encoded scenes are collected by a stereoscopic lens and
then acquired by a streak camera. With the entrance fully
open, which is different from the conventional way of
operation, the streak camera can receive the 2D x-y spatial
information. A single image is taken after temporal
shearing and spatiotemporal integration inside the streak
camera. This raw streak camera image contains two time-
sheared views of the transient phenomenon of interest,
complementarily encoded. See Supplementary Section 1
and Supplementary Fig. S1 for the hardware imple-
mentation of LS-CUP and the operation principle of the
streak camera.
Owing to the dual-channel operation of LS-CUP, we

can select different flame signals by inserting spectral
filters either at the front imaging optics (SF1 in Fig. 1c) or
in the two encoded beam paths (SF2 and SF3 in Fig. 1c).
Such flexibility renders this system adaptable for simul-
taneous imaging of two species (i.e., scattering and LII,
two-color LII etc.). See Supplementary Table S1 for the
experimental configurations for observing different types
of signals. Retrieving the ultrafast dynamics from one

single LS-CUP acquisition is an ill-posed inverse problem,
which can be solved by regularization-based image
reconstruction algorithms. More details on the forward
imaging model and the reconstruction technique can be
found in Supplementary Section 2.

Real-time observation of PAH-LIF decay
New experimental insights are necessary to better

understand the PAH’s growth chemistry because they are
molecular precursors of soot particles, and the overall
soot-formation process are linked to their growth starting
with the first aromatic ring18. Spatially resolved averaged
2D LIF of PAHs has been exploited to estimate the PAHs
concentration in flames, and time-resolved 1D measure-
ments have been reported in the past30. However, single-
shot high-speed spatiotemporal imaging of PAHs has not
yet been reported. Figure 2a shows the LIF decay of PAHs
at height h1 over time, excited by a single 532 nm pulse
with the laser fluence of 0.01 J cm-2. The full sequence is
shown in Supplementary Movie S1. The signal is recorded
at a 1.25 Gfps imaging speed with a frame interval of
0.8 ns and the signal is detected through the 350–450 nm
spectral band, representative of the concentration of
small, primarily 3–4 ringed PAHs52. The resulting images
from the center plane of the flame reveal the typical
behavior of a non-premixed flame with an empty fuel core
and PAH fields distributed towards the annular sur-
rounding flame front region resulting from planar laser-
sheet excitation. An axial symmetry (in radial profiles) of
LIF is consistent with the previous time-integrated LIF
images of the laminar diffusion flames30,53. In diffusion
flames, a good correlation between the fluorescence
intensity and PAHs concentration has been reported54.
Therefore, time-resolved data at early times in our mea-
surements can be a good qualitative map of PAH mole-
cules concentration. Figure 2b shows the 2D snapshots of
time-resolved PAH-LIF, where initially the intensities
are higher at 0 ns and 14.4 ns and at later times such as
115.2 ns it decays exponentially, which is also described
by the plot in Fig. 2c. Figure 2d shows the 2D lifetime
map of PAH-LIF, which is in the range of 80–100 ns.
Here, each spatial point is fitted to an exponential to
deduce the lifetime.
Figure 2e shows a combined view of flame luminosity

(gray background), PAH-LIF (blue colormap), soot-LII
(hot colormap), and elastic light scattering (green color-
map), extracted from the time-integrated images from
three sequential measurements performed in this study
(see sections 2–5). Indeed, it reveals the interactions
between PAH molecules and soot particles distributed in
a 2D plane, probed using LS-CUP. For instance, on the
left side, we observe that the light scattering resides at the
outer edges of the flame and PAHs are formed towards
the flame center. Similarly, on the right side, soot is
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covering the PAHs and has a more spread-out field
towards the oxidation zone having higher heat release.

Time-resolved one-color LII and primary particle size
distribution
Following the soot evolution process, right after the soot

inception step with the gas-to-solid phase transition, the
primary particle growth is of particular interest. The soot
size can be deduced from the LII signals by means of
energy and mass balancing49,51. Figure 3a, b shows single-
pulse-initiated (1064 nm) 2D maps of time-resolved LII at
an imaging speed of 1.25 Gfps at height h2. Similarly,
Fig. 3c, d shows the time-resolved 2D maps of LII for a
sequential measurement performed at height h1. In both
cases, we use a laser fluence of 0.25 J cm−2 and the results
from lower fluences are given in Supplementary Fig. S3
and Supplementary Movie S2. Laser heating of soot par-
ticles is visible from the highest LII intensities at initial
times, i.e., 0 ns and 16 ns, and as the soot particles
cool down, the LII intensity decreases (128 ns in Fig. 3b).

The region of peak intensities is located between
y=−2mm and y= 2 mm in Fig. 3a, b for height h2, while
this region (from y=−1mm to y= 1mm) is smaller in
Fig. 3c, d for height h1. Additionally, when comparing the
results of two different heights, it is apparent that due to
the larger soot concentration, h2 has higher LII intensities
than h1 at similar time instances (see Fig. 3b, d). The flame
appears to be more symmetric in h2 than in h1, which can
be explained as the two measurements are done sequen-
tially and in later the flame is slightly tilted.
Figure 3e, f shows 2D primary particle size (dp) distribu-

tions in the x-y plane at h2 and h1, respectively. These maps
are obtained using time-resolved data in Fig. 3a, c. We
adapted an LII model to estimate soot particle size as
described in more detail in Supplementary Section 4. Note
that the raw particle size maps have isolated spurious data
points, and they are effectively removed by applying a low-
pass filter and the original data are given in Supplementary
Fig. S5. It can be seen that the primary soot size is in the
range of 5–25 nm at h2 (Fig. 3e) and 5–18 nm at h1 (Fig. 3f).
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Along the vertical axis, the soot size shows an increasing
trend at h1 (marked as positions y1 to y3) and at h2 (marked
as y4 to y7), which is consistent with literature49,51. Figure 3g
shows the corresponding dp curves at these marked positions
along the x-direction. Figure 3h, i is the averaged dp curves at
h2 and h1, which are obtained from the horizontal averaging
of data in Fig. 3e, f, respectively. The results reveal growth of
soot primary particles with the main flow direction. Beyond
y6, a decrease of dp can be observed, which can be traced
back to the onset of oxidation processes in the flame.

Time-resolved two-color LII and soot temperature
dynamics
2D maps of temporal decay of LII with two optical

bandpass filters – short wavelength (centered at 460 nm)
and long wavelength (centered at 666 nm) – are shown in
Fig. 4a, b. They are recorded simultaneously by the two
channels in LS-CUP. The LII intensities for soot particles
at h1 in Fig. 4b are higher than those in Fig. 4a and axi-
symmetric distribution of soot is observed on both sides
of the flame. Figure 4c gives the real-time 2D maps of soot
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temperature in the range of 2000 K to 4000 K, extracted
from the intensity ratio of two bands shown in Fig. 4a, b.
The descriptions of the numerical model for temperature
extraction can be found in Supplementary Section 5. Note
that before taking the ratio, intensities of the two bands55

have to be corrected for the wavelength dependence of the
quantum efficiency of the streak camera34. We can find
that the soot temperature is lower near the flame’s origin
(from y=−2mm to y= 0 mm in comparison to the
temperature in the upper portion of the flame. Figure 4d
shows the exemplary 2D temperature snapshots of laser-
pulse heated soot from 8.8 ns to 143.2 ns. Initially, the
temperature is ~3500 K in the majority and decays to
~3000 K at 143.2 ns. These maps indicate variations in the
temperature throughout the flame which is highest at
the edges of the flame, and lowest at the center and the
bottom. These findings are consistent with previous
measurements in diffusion flames56. Some factors that
explain this temperature variation are the greater heat loss
for smaller dp via surface heat conduction, the distribution
of local temperatures within the flame, differences in the
optical properties of soot, depending on its maturity,
variations in the local laser fluence of the laser sheet, and
the extinction of laser pulse. Note that throughout the
measurement, we did not correct for the extinction of
laser intensity inside the flame. Figure 4e shows the plot of
the average soot temperature, which decays from 3300 K
to 3000 K in 160 ns, following an exponential fit. Our
results are comparable with the averaged two-color LII
performed in candle flame51 and ethylene flame57. How-
ever, the measured frame interval in ref. 48 was no less
than 20 ns, limited by the ICCD’s gating time and that
work did not achieve single-shot imaging since 200 ima-
ges are acquired for each time point. The temperature
evolution of only one single point in flame was measured
with a temporal resolution worse than 2 ns54.
The full movie showing this ultrafast temperature decay

is presented in Supplementary Movie S3. We can also
derive a 2D map of soot particle sizes based on the tem-
perature decay at each spatial position, as shown in Fig. 4f,
the method of which is described in Supplementary Sec-
tion 5. Particle size plots at eight vertical locations, shown
in Fig. 4g, indicate a good match between two-color LII
and one-color LII (Fig. 3f). They both follow an increasing
trend in particle size as the height moves up. The shift in
the horizontal direction is due to the shot-to-shot varia-
tion of the flame. Note that a low-pass filter is again
applied to remove the spurious data points in the raw size
data (Supplementary Fig. S7).

Real-time observation of elastic light scattering from soot
particles
A combination of LII and ELS has been utilized to

determine soot aggregate size46,58. Figure 5a, b demonstrates

the real-time observation of ELS of 532 nm laser at height
h1, showing the temporal decay of ELS intensity. The life-
time of ELS is much shorter in comparison to LII and LIF
signals because it is inherent from the laser pulse (15 ns).
Note that the imaging speed, in this case, is 12.5 Gfps with a
frame interval of 80 ps and there are 200 reconstructed
frames in total. See Supplementary Movie S4 for the full
sequence. One can observe lower scattering signals near
the origin of the flame and increasing signals above the
origin. This is consistent with the increase in soot particle
size presented in Fig. 3f. The transmission bandwidth of
the band-pass filter for detecting ELS is only 0.15 nm,
therefore the fluorescence signal from PAHs is negligible.
The scattering from PAHmolecules has been reported to be
negligible as well in previous studies59. The normalized total
intensity of ELS reaches the minimum at 12 ns.
According to the theory of Rayleigh scattering, the

intensity of scattered light is proportional to the sixth
power of the scatterer’s diameter, when the diameter is
less than one-tenth of the wavelength. Figure 5c shows the
curves of averaged scattering intensity and the sixth
power of averaged soot particle size (obtained from
Fig. 3i), displaying the evidence of Rayleigh and non-
Rayleigh scattering regimes. For example, the curves fol-
low very well for the smaller particles (≤9.5 nm) near the
flame origin when y < 0.1 mm. The larger particles at
flame heights y > 0.1 mm show deviated curves, repre-
senting a non-Rayleigh regime. In the inset plot, fitting
root mean square (RMS) proves the minimum error when
using the power of six.
Following the approximate evaluation scheme accord-

ing to Dobbins and Megaridis46 and Will et al.47, a relative
determination of aggregate sizes D is obtained from a
combination of LII and ELS signals. Considering the
primary particle size in Fig. 3f, we can also derive the
average number of primary particles per aggregate Np.
See Supplementary section 6 for more details in calcula-
tion. This evaluation assumes a constant structure factor
for aggregates scattering, i.e., scattering from the aggre-
gates is approximated to occur in their Rayleigh regime.
Despite this simplification, a qualitative picture of D and
Np in one cluster can be obtained, as shown in Figs. 5d
and 5e, respectively. With increasing height, aggregate
size grows. Note that in Fig. 5e, the relative average
number of monomers in one cluster are much lower near
the flame’s origin and starts increasing as we move
upwards in the flame.

Discussion
System innovation in ultrafast imaging of combustion
We have demonstrated LS-CUP to achieve the world’s

fastest single-pulse real-time 2D imaging of combustion
with an unprecedented imaging speed up to 12.5 Gfps and
a sequence depth up to 200 frames. This imaging speed is
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at least three orders of magnitude higher than the existing
high-speed imaging techniques that still sit in the Mfps
regime. Current methods require active illumination,
while LS-CUP has the capability of performing both active
(laser-induced phenomena) and passive imaging (flame
luminosity and species chemiluminescence). Since LS-
CUP relies on a streak camera, the imaging speed can be
readily varied according to the requirement without
modifying the setup. Above Mfps imaging speed, simul-
taneous single-shot planar imaging of more than one
species is only possible using LS-CUP. Thus, we have, to
the best of our knowledge, demonstrated the first Gfps
real-time observation of the temperature dynamics of
laser-heated soot particles using a two-color pyrometry
scheme. In addition, ELS imaging of soot particles can
yield soot cluster size information when combined with
simultaneous LII imaging using two channels. PAHs are
the building blocks of soot in flames and organic matters
in the interstellar space. LIF is one of the most popular
methods for characterizing PAHs; however, their spatio-
temporal 2D mapping has remained a challenge mainly

due to the demand of higher photon counts at higher
imaging speeds, while a low laser fluence is recom-
mended. A high laser fluence can heat soot particles,
resulting in LII signals overlapping and easily over-
whelming the LIF signals, therefore, the laser fluences is
reduced to the lowest value that can be used to probe
PAHs. An alternative solution is to use UV wavelength,
but such lasers are less available. Here, our real-time
PAH-LIF measurements provide the first spatiotemporal
PAHs distribution in a flame. Finally, it is necessary to
mention that Gfps LS-CUP is not applicable to study the
slower dynamics and spatial variations in flame structures
taking place in µs time scale. To resolve the turbulence,
we can readily modify the current system to an imaging
speed of Mfps.

Soot precursor formation, soot inception and early time
formation of soot particles
In addition to the attractive merits in single-shot spa-

tiotemporal imaging, LS-CUP can be used to extract 2D
maps of various quantities that provide a comprehensive
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understanding of soot formation process in flames. Our
measurements support the broadly investigated soot
inception mechanism, which indicates that soot pre-
cursors arise through molecular growth - both physical
and chemical associations of large PAHs, leading to an
increase in PAH-LIF intensity above the flame origin
(Fig. 2). LII measurements suggest the formation of
smaller soot particles from the clustered PAHs and the
subsequent growth of soot to larger sizes moving upward
in the flame (Fig. 3). The soot particle size, concentration
and aggregate size have shown an increasing trend when
moving away from the flame origin radially and axially,
confirmed by higher LII and scattering intensities (Figs. 3
and 5). At one point, oxygen from the surrounding
starts to oxidize the particles, resulting in a size decrease
(Fig. 3). Finally, the temperature increase along the flame
axis may be an indicative of an increase in formation
rates of both PAHs and soot (Fig. 4). In sum, LS-CUP
can provide a complete picture of all major steps in
incomplete combustion.

Potential applications in simultaneously probing multiple
species in combustion
The real-time ultrafast imaging by LS-CUP could open

new avenues in, for instance, imaging sizes of PAH
molecules using femtosecond pulses by implementing
two-channel fluorescence anisotropy (sub-nanoseconds)
with the current scheme60. This could provide a scientific
insight into the origin of different ringed PAHs – crucial
for understanding the soot inception process. In addition,
the studies on the impact of high laser fluence in soot
oxidation and soot graphitization could be essential for
fabricating carbon-based nanomaterials61. LS-CUP could
host up to four channels35 to simultaneously observe four
different species in flames, such as those induced by
nanosecond/femtosecond filamentation62. Further, LS-
CUP could be used for spatiotemporal imaging of low-
temperature plasma-assisted combustion, which sig-
nificantly reduces soot and NOx generation in engines63.
Finally, LS-CUP could provide real-time observation of
hydrogen atoms formation and backward lasing of these
atoms at picosecond time scale using two-photon exci-
tation64,65. Hydrogen is one of the most promising fuels,
which offers a great possibility of cleaner combustion with
minimal emissions. Therefore, LS-CUP offers the oppor-
tunity to couple a wide range of diagnostics to develop a
fundamental understanding of combustion processes.

Ultrafast wide-field temperature imaging
Many physical, chemical, and biological processes are

governed by temperature66. Here, using two-channel
LS-CUP, planar two-color pyrometry67 was realized for
1.25 Gfps temperature imaging in flames (Fig. 4). Laser
heating of soot particles shows an initial temperature of

above 3300 K where soot particles ideally lose their energy
by sublimation and after 160 ns, they cool down to a
temperature below 3100 K by transferring their heat to
the surrounding (Fig. 4e). This demonstration is currently
the fastest spatiotemporal temperature imaging, to our
knowledge. There can be broader applications, far beyond
combustion, for example, in free-electrons’ temperature
imaging during femtosecond laser breakdown in high-
pressure gases68. In a laser spark generated in air, the
temperature of plasma decays from 45000 K to approxi-
mately 25000 K in 200 ns69. Sonoluminescence is one of
the mysteries in condensed matter physics where a rapid
collapse of the bubble produces a plasma temperature of
greater than 10000 K and it flashes light pulses in tens of
ps70. The ultrafast temperature sensing of the sonolumi-
nescence bubble can be performed using LS-CUP, given
the broadband spectra of the plasma emission71.

Materials and methods
Laser sheet to generate flame signals
The flame signal generation module is schematically

depicted in Fig. S1a. A Q-switched Nd:YAG nanosecond
laser (AT Laser, GlobalCure) with 15 ns pulse full-width-
at-half-maximum (FWHM), 4 Hz repetition rate, and ~
5mm beam diameter is used as the light source. It offers
output options of 1064 nm and 532 nm (second harmo-
nic). A concave lens of f= 50 mm BEL1 (Thorlabs,
LC1715) and a convex lens of f= 200 mm BEL2 (Thor-
labs, LA1708) are used to expand the output beam. An
f= 500 mm cylindrical lens CyL (Thorlabs, LJ1144RM)
generates a laser sheet of thickness ~ 400 µm inside the
kerosene flame. The burner is mounted on a translation
stage so that the laser sheet can excite different positions
of the flame. A half-waveplate HWP (Thorlabs,
WPH10M-1064 for 1064 nm and WPH10M-532 for
532 nm) and a linear polarizer P1 (Thorlabs, GL15) are
used to adjust the laser fluence. The laser sheet is polar-
ized along the y direction. The reflected light from a 10:90
(R:T) beam splitter BS1 (Thorlabs, BS025) is picked by a
power meter for laser fluence measurement.

LS-CUP imaging setup
The flame dynamics is first imaged to the intermediate

image planes (IIPs) by a pair of 2” lenses L1 of
f= 200 mm (Thorlabs, AC508-200-A-ML) and L2 of
f= 100 mm (Thorlabs, AC508-100-A-ML). A 2” lens L3
of f= 150 mm (Thorlabs, AC508-150-A-ML) and a ste-
reoscopic lens assembly SL (Olympus, MV PLAPO 2XC)
relays the image to the DMD (Texas Instruments,
LightCrafter 3000) for spatial encoding. The reflected
light from the DMD forms two beam paths, masked by
two complementary encoding patterns C1 and C2.
Examples of small regions in C1 and C2 are given in
Fig. S1b. SL with a numerical aperture (NA) of 0.5 can
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collect both reflected beams. It works with 1” lenses L4
and L5 of f= 200 mm (Thorlabs, AC254-200-A-ML) to
relay the encoded images to the entrance of a streak
camera (Hamamatsu, C7700). A knife-edge right-angle
prism mirror KRPM (OptoSigma, KRPB4-15-550) folds
the two images so that they can fit in the streak camera’s
entrance side by side without overlap. A 50:50 (R:T) beam
splitter BS2 (Thorlabs, BS013) splits the time-sheared
views and time-unsheared view. The time-unsheared
view is acquired by an external CCD camera (Point Gray,
CM3-U3-28S4M-CS).
A linear polarizer P2 (Thorlabs, LPVISE100-A) is

applied at the front of the LS-CUP imaging module.
Neutral density filters ND1, ND2, ND3, and spectral fil-
ters SF1, SF2, SF3 are optional and reconfigurable to
adapt to different imaging scenarios. The filter combina-
tions for different imaging experiments are summarized
in Table S1. The collimated light from a 520 nm laser
diode (Thorlabs, PL520) is used as the uniform illumi-
nation to calibrate the DMD encoding patterns.
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